3.362 \(\int \frac{x^2 \sqrt{d+e x^2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=324 \[ \frac{\left (-\frac{2 a c e+b^2 (-e)+b c d}{\sqrt{b^2-4 a c}}-b e+c d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{c \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{\left (\frac{2 a c e+b^2 (-e)+b c d}{\sqrt{b^2-4 a c}}-b e+c d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{c \sqrt{\sqrt{b^2-4 a c}+b} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{\sqrt{e} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{c} \]

[Out]

((c*d - b*e - (b*c*d - b^2*e + 2*a*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/
(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(c*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*
a*c])*e]) + ((c*d - b*e + (b*c*d - b^2*e + 2*a*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*
a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(c*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + S
qrt[b^2 - 4*a*c])*e]) + (Sqrt[e]*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/c

________________________________________________________________________________________

Rubi [A]  time = 1.51684, antiderivative size = 324, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {1293, 217, 206, 1692, 377, 205} \[ \frac{\left (-\frac{2 a c e+b^2 (-e)+b c d}{\sqrt{b^2-4 a c}}-b e+c d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{c \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{\left (\frac{2 a c e+b^2 (-e)+b c d}{\sqrt{b^2-4 a c}}-b e+c d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{c \sqrt{\sqrt{b^2-4 a c}+b} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{\sqrt{e} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{c} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[d + e*x^2])/(a + b*x^2 + c*x^4),x]

[Out]

((c*d - b*e - (b*c*d - b^2*e + 2*a*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/
(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(c*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*
a*c])*e]) + ((c*d - b*e + (b*c*d - b^2*e + 2*a*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*
a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(c*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + S
qrt[b^2 - 4*a*c])*e]) + (Sqrt[e]*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/c

Rule 1293

Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Dist[(
e*f^2)/c, Int[(f*x)^(m - 2)*(d + e*x^2)^(q - 1), x], x] - Dist[f^2/c, Int[((f*x)^(m - 2)*(d + e*x^2)^(q - 1)*S
imp[a*e - (c*d - b*e)*x^2, x])/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c,
 0] &&  !IntegerQ[q] && GtQ[q, 0] && GtQ[m, 1] && LeQ[m, 3]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1692

Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandInteg
rand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x^2] && NeQ[b
^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2 \sqrt{d+e x^2}}{a+b x^2+c x^4} \, dx &=-\frac{\int \frac{a e-(c d-b e) x^2}{\sqrt{d+e x^2} \left (a+b x^2+c x^4\right )} \, dx}{c}+\frac{e \int \frac{1}{\sqrt{d+e x^2}} \, dx}{c}\\ &=-\frac{\int \left (\frac{-c d+b e+\frac{b c d-b^2 e+2 a c e}{\sqrt{b^2-4 a c}}}{\left (b-\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}}+\frac{-c d+b e-\frac{b c d-b^2 e+2 a c e}{\sqrt{b^2-4 a c}}}{\left (b+\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}}\right ) \, dx}{c}+\frac{e \operatorname{Subst}\left (\int \frac{1}{1-e x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )}{c}\\ &=\frac{\sqrt{e} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{c}+\frac{\left (c d-b e+\frac{b c d-b^2 e+2 a c e}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\left (b+\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}} \, dx}{c}-\frac{\left (-c d+b e+\frac{b c d-b^2 e+2 a c e}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\left (b-\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}} \, dx}{c}\\ &=\frac{\sqrt{e} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{c}+\frac{\left (c d-b e+\frac{b c d-b^2 e+2 a c e}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{b+\sqrt{b^2-4 a c}-\left (-2 c d+\left (b+\sqrt{b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )}{c}-\frac{\left (-c d+b e+\frac{b c d-b^2 e+2 a c e}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{b-\sqrt{b^2-4 a c}-\left (-2 c d+\left (b-\sqrt{b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )}{c}\\ &=\frac{\left (c d-b e-\frac{b c d-b^2 e+2 a c e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e} x}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{c \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}+\frac{\left (c d-b e+\frac{b c d-b^2 e+2 a c e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e} x}{\sqrt{b+\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{c \sqrt{b+\sqrt{b^2-4 a c}} \sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}+\frac{\sqrt{e} \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{c}\\ \end{align*}

Mathematica [B]  time = 6.17332, size = 7768, normalized size = 23.98 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^2*Sqrt[d + e*x^2])/(a + b*x^2 + c*x^4),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.024, size = 224, normalized size = 0.7 \begin{align*} -{\frac{1}{c}\sqrt{e}\ln \left ( \sqrt{e{x}^{2}+d}-\sqrt{e}x \right ) }+{\frac{1}{2\,c}\sqrt{e}\sum _{{\it \_R}={\it RootOf} \left ( c{{\it \_Z}}^{4}+ \left ( 4\,be-4\,cd \right ){{\it \_Z}}^{3}+ \left ( 16\,a{e}^{2}-8\,deb+6\,c{d}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,b{d}^{2}e-4\,c{d}^{3} \right ){\it \_Z}+c{d}^{4} \right ) }{\frac{ \left ( be-cd \right ){{\it \_R}}^{2}+2\, \left ( 2\,a{e}^{2}-deb+c{d}^{2} \right ){\it \_R}+b{d}^{2}e-c{d}^{3}}{{{\it \_R}}^{3}c+3\,{{\it \_R}}^{2}be-3\,{{\it \_R}}^{2}cd+8\,{\it \_R}\,a{e}^{2}-4\,{\it \_R}\,bde+3\,{\it \_R}\,c{d}^{2}+b{d}^{2}e-c{d}^{3}}\ln \left ( \left ( \sqrt{e{x}^{2}+d}-\sqrt{e}x \right ) ^{2}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x)

[Out]

-e^(1/2)/c*ln((e*x^2+d)^(1/2)-e^(1/2)*x)+1/2*e^(1/2)/c*sum(((b*e-c*d)*_R^2+2*(2*a*e^2-b*d*e+c*d^2)*_R+b*d^2*e-
c*d^3)/(_R^3*c+3*_R^2*b*e-3*_R^2*c*d+8*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2+b*d^2*e-c*d^3)*ln(((e*x^2+d)^(1/2)-e^(1/
2)*x)^2-_R),_R=RootOf(c*_Z^4+(4*b*e-4*c*d)*_Z^3+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^2+(4*b*d^2*e-4*c*d^3)*_Z+c*d^4))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x^{2} + d} x^{2}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x^2 + d)*x^2/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 29.9386, size = 6734, normalized size = 20.78 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

[-1/4*(sqrt(1/2)*c*sqrt(-(b*c*d - (b^2 - 2*a*c)*e + (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(
b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3))*log(-((b^2*c^2 - 4*a*c^3)*d*x^2*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)
/(b^2*c^4 - 4*a*c^5)) + 2*a*c*d^2 - 2*a*b*d*e - (b*c*d^2 + 4*a*b*e^2 - (b^2 + 4*a*c)*d*e)*x^2 + 2*sqrt(1/2)*sq
rt(e*x^2 + d)*((b^3*c^2 - 4*a*b*c^3)*x*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) - ((b^2*c - 4
*a*c^2)*d - (b^3 - 4*a*b*c)*e)*x)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e + (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d
*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3)))/x^2) - sqrt(1/2)*c*sqrt(-(b*c*d - (b^2 - 2*a*c)*e +
(b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3))*log(-((b^2
*c^2 - 4*a*c^3)*d*x^2*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) + 2*a*c*d^2 - 2*a*b*d*e - (b*c
*d^2 + 4*a*b*e^2 - (b^2 + 4*a*c)*d*e)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^3*c^2 - 4*a*b*c^3)*x*sqrt((c^2*d^2
 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) - ((b^2*c - 4*a*c^2)*d - (b^3 - 4*a*b*c)*e)*x)*sqrt(-(b*c*d - (b^
2 - 2*a*c)*e + (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c
^3)))/x^2) + sqrt(1/2)*c*sqrt(-(b*c*d - (b^2 - 2*a*c)*e - (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*
e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3))*log(((b^2*c^2 - 4*a*c^3)*d*x^2*sqrt((c^2*d^2 - 2*b*c*d*e + b^2
*e^2)/(b^2*c^4 - 4*a*c^5)) - 2*a*c*d^2 + 2*a*b*d*e + (b*c*d^2 + 4*a*b*e^2 - (b^2 + 4*a*c)*d*e)*x^2 + 2*sqrt(1/
2)*sqrt(e*x^2 + d)*((b^3*c^2 - 4*a*b*c^3)*x*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) + ((b^2*
c - 4*a*c^2)*d - (b^3 - 4*a*b*c)*e)*x)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e - (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*
b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3)))/x^2) - sqrt(1/2)*c*sqrt(-(b*c*d - (b^2 - 2*a*c)
*e - (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3))*log((
(b^2*c^2 - 4*a*c^3)*d*x^2*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) - 2*a*c*d^2 + 2*a*b*d*e +
(b*c*d^2 + 4*a*b*e^2 - (b^2 + 4*a*c)*d*e)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^3*c^2 - 4*a*b*c^3)*x*sqrt((c^2
*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) + ((b^2*c - 4*a*c^2)*d - (b^3 - 4*a*b*c)*e)*x)*sqrt(-(b*c*d -
 (b^2 - 2*a*c)*e - (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4
*a*c^3)))/x^2) - 2*sqrt(e)*log(-2*e*x^2 - 2*sqrt(e*x^2 + d)*sqrt(e)*x - d))/c, -1/4*(sqrt(1/2)*c*sqrt(-(b*c*d
- (b^2 - 2*a*c)*e + (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 -
4*a*c^3))*log(-((b^2*c^2 - 4*a*c^3)*d*x^2*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) + 2*a*c*d^
2 - 2*a*b*d*e - (b*c*d^2 + 4*a*b*e^2 - (b^2 + 4*a*c)*d*e)*x^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^3*c^2 - 4*a*b*
c^3)*x*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) - ((b^2*c - 4*a*c^2)*d - (b^3 - 4*a*b*c)*e)*x
)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e + (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5
)))/(b^2*c^2 - 4*a*c^3)))/x^2) - sqrt(1/2)*c*sqrt(-(b*c*d - (b^2 - 2*a*c)*e + (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^
2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3))*log(-((b^2*c^2 - 4*a*c^3)*d*x^2*sqrt((c^2*
d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) + 2*a*c*d^2 - 2*a*b*d*e - (b*c*d^2 + 4*a*b*e^2 - (b^2 + 4*a*c)
*d*e)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^3*c^2 - 4*a*b*c^3)*x*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4
 - 4*a*c^5)) - ((b^2*c - 4*a*c^2)*d - (b^3 - 4*a*b*c)*e)*x)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e + (b^2*c^2 - 4*a*c^
3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3)))/x^2) + sqrt(1/2)*c*sqrt(-(
b*c*d - (b^2 - 2*a*c)*e - (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*
c^2 - 4*a*c^3))*log(((b^2*c^2 - 4*a*c^3)*d*x^2*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) - 2*a
*c*d^2 + 2*a*b*d*e + (b*c*d^2 + 4*a*b*e^2 - (b^2 + 4*a*c)*d*e)*x^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^3*c^2 - 4
*a*b*c^3)*x*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) + ((b^2*c - 4*a*c^2)*d - (b^3 - 4*a*b*c)
*e)*x)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e - (b^2*c^2 - 4*a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*
a*c^5)))/(b^2*c^2 - 4*a*c^3)))/x^2) - sqrt(1/2)*c*sqrt(-(b*c*d - (b^2 - 2*a*c)*e - (b^2*c^2 - 4*a*c^3)*sqrt((c
^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3))*log(((b^2*c^2 - 4*a*c^3)*d*x^2*sqrt((
c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)) - 2*a*c*d^2 + 2*a*b*d*e + (b*c*d^2 + 4*a*b*e^2 - (b^2 + 4*
a*c)*d*e)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((b^3*c^2 - 4*a*b*c^3)*x*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2
*c^4 - 4*a*c^5)) + ((b^2*c - 4*a*c^2)*d - (b^3 - 4*a*b*c)*e)*x)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e - (b^2*c^2 - 4*
a*c^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/(b^2*c^4 - 4*a*c^5)))/(b^2*c^2 - 4*a*c^3)))/x^2) + 4*sqrt(-e)*arct
an(sqrt(-e)*x/sqrt(e*x^2 + d)))/c]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \sqrt{d + e x^{2}}}{a + b x^{2} + c x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*x**2+d)**(1/2)/(c*x**4+b*x**2+a),x)

[Out]

Integral(x**2*sqrt(d + e*x**2)/(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [A]  time = 1.22276, size = 36, normalized size = 0.11 \begin{align*} -\frac{e^{\frac{1}{2}} \log \left ({\left (x e^{\frac{1}{2}} - \sqrt{x^{2} e + d}\right )}^{2}\right )}{2 \, c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

-1/2*e^(1/2)*log((x*e^(1/2) - sqrt(x^2*e + d))^2)/c